Introducing MLOps: How to Scale Machine Learning in the Enterprise (pdf)

$15.00

Author Mark Treveil, Nicolas Omont, Clément Stenac, Kenji Lefevre, Du Phan, Joachim Zentici, Adrien Lavoillotte, Makoto Miyazaki, Lynn Heidmann
Edition 1
Edition Year 2020
Format PDF
ISBN 9781492083290
Language English
Number Of Pages 276
Publisher O’Reilly Media

Description

This book helps you:

  • Fulfill data science value by reducing friction throughout ML pipelines and workflows
  • Refine ML models through retraining, periodic tuning, and complete remodeling to ensure long-term accuracy
  • Design the MLOps life cycle to minimize organizational risks with models that are unbiased, fair, and explainable
  • Operationalize ML models for pipeline deployment and for external business systems that are more complex and less standardized

This book introduces the key concepts of MLOps to help data scientists and application engineers not only operationalize ML models to drive real business change but also maintain and improve those models over time. Through lessons based on numerous MLOps applications around the world, nine experts in machine learning provide insights into the five steps of the model life cycle–Build, Preproduction, Deployment, Monitoring, and Governance–uncovering how robust MLOps processes can be infused throughout.

More than half of the analytics and machine learning (ML) models created by organizations today never make it into production. Some of the challenges and barriers to operationalization are technical, but others are organizational. Either way, the bottom line is that models not in production can’t provide business impact.

Additional information

Author

Mark Treveil, Nicolas Omont, Clément Stenac, Kenji Lefevre, Du Phan, Joachim Zentici, Adrien Lavoillotte, Makoto Miyazaki, Lynn Heidmann

Edition

1

Edition Year

2020

Format

PDF

ISBN

9781492083290

Language

English

Number Of Pages

276

Publisher

O'Reilly Media

Reviews

There are no reviews yet.

Be the first to review “Introducing MLOps: How to Scale Machine Learning in the Enterprise (pdf)”

Your email address will not be published. Required fields are marked *