Multi-Agent Coordination: A Reinforcement Learning Approach (pdf)

$40.00

Author Arup Kumar Sadhu; Amit Konar
Edition 1
Edition Year 2020
Format PDF
ISBN 9781119699033
Language English
Number Of Pages 310
Publisher Wiley

Description

You’ll learn about how to accelerate the exploration of the team-goal and alternative approaches to speeding up the convergence of TMAQL by identifying the preferred joint action for the team. The authors also propose novel approaches to consensus Q-learning that address the equilibrium selection problem and a new way of evaluating the threshold value for uniting empires without imposing any significant computation overhead. Finally, the book concludes with an examination of the likely direction of future research in this rapidly developing field.

Readers will discover cutting-edge techniques for multi-agent coordination, including:

  • An introduction to multi-agent coordination by reinforcement learning and evolutionary algorithms, including topics like the Nash equilibrium and correlated equilibrium
  • Improving convergence speed of multi-agent Q-learning for cooperative task planning
  • Consensus Q-learning for multi-agent cooperative planning
  • The efficient computing of correlated equilibrium for cooperative q-learning based multi-agent planning
  • A modified imperialist competitive algorithm for multi-agent stick-carrying applications

Perfect for academics, engineers, and professionals who regularly work with multi-agent learning algorithms, Multi-Agent Coordination: A Reinforcement Learning Approach also belongs on the bookshelves of anyone with an advanced interest in machine learning and artificial intelligence as it applies to the field of cooperative or competitive robotics.

Multi-Agent Coordination: A Reinforcement Learning Approach delivers a comprehensive, insightful, and unique treatment of the development of multi-robot coordination algorithms with minimal computational burden and reduced storage requirements when compared to traditional algorithms. The accomplished academics, engineers, and authors provide readers with both a high-level introduction to, and overview of, multi-robot coordination, and in-depth analyses of learning-based planning algorithms.

Additional information

Author

Arup Kumar Sadhu; Amit Konar

Edition

1

Edition Year

2020

Format

PDF

ISBN

9781119699033

Language

English

Number Of Pages

310

Publisher

Wiley

Reviews

There are no reviews yet.

Be the first to review “Multi-Agent Coordination: A Reinforcement Learning Approach (pdf)”

Your email address will not be published. Required fields are marked *