Python for Probability, Statistics, and Machine Learning 2nd Ed. (pdf)

$12.00

Author José Unpingco
Edition 2
Edition Year 2019
Format PDF
Language English
Number Of Pages 398
Publisher springer
ISBN 9783030185442

Description

This updated edition now includes the Fisher Exact Test and the Mann-Whitney-Wilcoxon Test. A new section on survival analysis has been included as well as substantial development of Generalized Linear Models. The new deep learning section for image processing includes an in-depth discussion of gradient descent methods that underpin all deep learning algorithms.   As with the prior edition, there are new and updated *Programming Tips* that the illustrate effective Python modules and methods for scientific programming and machine learning. There are 445 run-able code blocks with corresponding outputs that have been tested for accuracy.  Over 158 graphical visualizations (almost all generated using Python) illustrate the concepts that are developed both in code and in mathematics. We also discuss and use key Python modules such as Numpy, Scikit-learn, Sympy,  Scipy, Lifelines, CvxPy, Theano, Matplotlib, Pandas, Tensorflow, Statsmodels,  and Keras.
This book, fully updated for Python version 3.6+, covers the key ideas that link probability, statistics, and machine learning illustrated using Python modules in these areas.  All the figures and numerical results are reproducible using the Python codes provided. The author develops key intuitions in machine learning by working meaningful examples using multiple analytical methods and Python codes, thereby connecting theoretical concepts to concrete implementations. Detailed proofs for certain important results are also provided. Modern Python modules like Pandas, Sympy, Scikit-learn, Tensorflow, and Keras are applied to simulate and visualize important machine learning concepts like the bias/variance trade-off, cross-validation, and regularization. Many abstract mathematical ideas, such as convergence in probability theory, are developed and illustrated with numerical examples.

Additional information

Author

José Unpingco

Edition

2

Edition Year

2019

Format

PDF

Language

English

Number Of Pages

398

Publisher

springer

ISBN

9783030185442

Reviews

There are no reviews yet.

Be the first to review “Python for Probability, Statistics, and Machine Learning 2nd Ed. (pdf)”

Your email address will not be published. Required fields are marked *