TinyML: Machine Learning with TensorFlow Lite on Arduino and Ultra-Low-Power Microcontrollers (pdf)

$12.00

Author Pete Warden, Daniel Situnayake
Edition 1
Edition Year 2020
Format PDF
ISBN 9781492052043
Language English
Number Of Pages 504
Publisher O’Reilly Media

Description

Pete Warden and Daniel Situnayake explain how you can train models small enough to fit into any environment. Ideal for software and hardware developers who want to build embedded systems using machine learning, this guide walks you through creating a series of TinyML projects, step-by-step. No machine learning or microcontroller experience is necessary.

  • Build a speech recognizer, a camera that detects people, and a magic wand that responds to gestures
  • Work with Arduino and ultra-low-power microcontrollers
  • Learn the essentials of ML and how to train your own models
  • Train models to understand audio, image, and accelerometer data
  • Explore TensorFlow Lite for Microcontrollers, Google’s toolkit for TinyML
  • Debug applications and provide safeguards for privacy and security
  • Optimize latency, energy usage, and model and binary sizeDeep learning networks are getting smaller. Much smaller. The Google Assistant team can detect words with a model just 14 kilobytes in size—small enough to run on a microcontroller. With this practical book you’ll enter the field of TinyML, where deep learning and embedded systems combine to make astounding things possible with tiny devices.

Additional information

Author

Pete Warden, Daniel Situnayake

Edition

1

Edition Year

2020

Format

PDF

ISBN

9781492052043

Language

English

Number Of Pages

504

Publisher

O'Reilly Media

Reviews

There are no reviews yet.

Be the first to review “TinyML: Machine Learning with TensorFlow Lite on Arduino and Ultra-Low-Power Microcontrollers (pdf)”

Your email address will not be published. Required fields are marked *